

The challenges of future nuclear energy in Europe

Bernard SALHA,

President SNETP

The Nuclear in the EU : Overall vision of SNETP between 2021 and 2050

2021

- 104 power reactors (=50% of carbon free generation)
- 100 billions €
- 1.1 M jobs
- 29 research reactors
- Many applications (medical, chip doping, space, industry, etc.)

Industry & Research vision 2050

- Significant share of Nuclear across 2050 EU scenarios
- Nuclear brings dispatchable carbon-free power to a system w/ large share of vRES
- Nuclear is v. flexible / versatile & provides massive carbon-free energy for H2, district / industrial heat, etc.
- New technologies & applications have emerged (SMRs, Gen IV)
- Long Term solutions for High Level Waste available (inc repositories)

=>To achieve this & keep EU leadership, the nuclear industry needs:

- A conducive investment framework
- A performing, continuous & modernized supply chain, R&D labs and competences
- Investing in Innovation & R&D in order to support Industry & Research Vision 2050

SNETP

The association (AISBL, under Belgian law) gathers more than 110 stakeholders from industry, research centers, safety organisations, universities, non-governmental organisations, SMEs ...

NUGENIA Vision

Importance of LTO for NPP economics & the grid:

- > as nuclear has high fixed costs and low running costs
- > as it operates within a deregulated competitive electricity market
- \succ as nuclear remains essential to complement variable sources \rightarrow Need for flexibility
- > as it supports the security of electricity supply

A European-wide, industrial-driven nuclear R&D programme:

- > is key to maintaining nuclear competitiveness & safety in the EU
- paves the way for the emergence of spin-offs in other sectors (health, energy, clean heat, hydrogen, construction, industrial manufacturing, etc.)

Three R&D & innovation priorities

- Innovation & competitiveness (inc. large NPPs, SMRs, passive safety, EATF, additive M, etc.)
- > Digital transition (digital reactor, multi-physics modelling, advanced computing)
- > Safety & environment (accidents & hazards, severe accidents, D & WM)

ESNII vision: Advanced (Modular) Reactors Technologies

- MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) , a lead-bismuth Accelerator Driven System to demonstrate transmutation of high-level waste, & to support the maturity of ESNII technologies
- The Lead-cooled Fast Reactor (LFR) and the ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) project to build a European demonstrator of the LFR technology;
- The Gas-cooled Fast Reactor (GFR) and the ALLEGRO project (GFR demonstrator), an initiative with the goal to build an experimental facility to demonstrate the technological viability of the concept;
- The Sodium-cooled Fast Reactor (SFR) is the most internationally mature technology. Its industrial deployment in Europe necessitates still some improvements (safety, economic, ...).

Demo Project at the soonest by 2035

NC2I Vision

NC2I aims to make a significant contribution to Europe by providing clean and competitive energy beyond electricity by facilitating the deployment of nuclear cogeneration plants.

Based on a first HTGR demonstration by the end of the 2020s, it is possible to have 25% of process heat needs of industry delivered by nuclear high temperature cogeneration in 2050.

https://snetp.eu/wp-content/uploads/2020/10/NC2I-roadmap-October.pdf

SNETP strategy based on:

- Nuclear Energy is one key element of electricity generation by 2050 according to EU long term scenarios (15% of the mix)
- Nuclear research and innovation is key to keep on strengthening safety, performance, dismantling, waste management
- The door shall be kept widely open for research and innovation on new reactors (such as SMR, Gen IV) which could provide enhanced safety, performance and waste management
- Nuclear is a transverse technology with strong impact on other fields such as medicine, but also data management, industrial software development, balanced energy mix with variable RES

The approach: From Long Term Operation (now), to new Commercial Light Water Reactors (2030 and beyond) followed by Commercial Advanced Modular Reactors

> Together with Renewables, Nuclear reactors are a key asset to reach Net Zero by 2050

- Long Term Operation of existing Nuclear Power plant has to be strengthened in a safe and industrial way
- New Gen III reactors are to be built in time and in budget in order to play a significant role in the Net Zero Objective
- Light Water Reactor (LWR), both big plants and Small Modular Reactors (SMR) is today the unique solution to reach this objective

Nuclear has to be more sustainable on the long run

- Long Life wastes have to be reduced;
- Uranium fuel has to be recycled
- Advanced Modular Reactor, big and small plants (AMR), is the unique solution to reach this objective
- First demonstration projects could be available at the soonest by 2035 ; commercial projects beyond 2050

Continuity in policy is necessary between those two paths:

- Nuclear industry is a long leading time industry (20 years from Lab to Industry)
- Research development for LWR-SMRs in synergy with AMR
- Huge synergies exist for Industrial supply chain and human competences between LWR and AMR

EU SMR-partnership to start 2023

Scope:

- Establishing in the EU a domestic/European SMR programme as defined in the EC's "Vision for a decarbonised energy sector including European Small Modular Reactors",
- > creating necessary <u>enabling conditions</u> for the first EU SMRs to start operation in 2030.
- > co-ordinate MS & industry strategies towards an integrated and Robust supply chain in Europe.

Objectives

- > Develop the necessary industrial supply chain in Europe
- > Encourage the implementation of common (harmonized) licensing process across the EU.
- > establish a strategic research agenda :
 - > LWR-SMR, as a mature technology to be deployed in 2030.
 - > Advanced SMR (AMR-GENIV) design has to be matured by 2035 for long term prospect (sustainability) of fission technology.
- > Develop an international marketing strategy of the European SMR value chain

Take-away

- EU-citizens and industry need access to energy 24/7 in a safe , resilient and affordable way;
- Electricity demand is set to increase from 3000TWh to 4808TWh by 2050 due to increased electrification;
- Nuclear provides both flexible and dispatchable electricity, generating large quantities of low-carbon energy 24/7 without the need for other backup sources of energy nor large-scale storage;
- SNETP as the unique technological platform for fission R&D&I to dialogue with the EC services and member states;
- Big reactors and SMR development and deployment in Europe is an opportunity for a better mitigation of climate change, affordable energy prices, security of supply and Net-Zero emission by 2050;
- Together with big LWRs existing design, LWR- SMR are mature to be deployed starting 2030 as a key asset to succeed with Net Zero by 2050;
- AMR design to be matured by 2035 to ensure the sustainability of fission technology;
- The multiple challenges require:
 - high and continuous involvement of EU-Member states together with EC services and industry (such as SMR partnership)
 - > State of the art experimental facilities and demonstration
 - > Highly skilled competences and affordable supply chain in a continuous process

Invitation:

SNETP-FORUM-2022, June 2d, 2022 at Hotel de la région/Lyon

Aim: discuss and analyse recent technological innovations in different selected Scientific and technical topics to the stakeholders of SNETP

6 technical topics:

- SMRs : Ferry Roelofs (NRG), Jozef Sobolewski (NCBJ)
- > Nuclear codes and standards and supply chain: Oliver Martin (JRC)
- Digital and robotics: Eero Vesaoja (FORTUM), Christophe Schneidesch (Tractebel), Elisabeth Guillaut (ORANO)
- > R&D&I facilities: Pavel Kral (UJV), Petri Kinnunen (VTT)
- > Waste minimization and fuel cycle: Erika Holt (VTT), Anthony Banford (NNL)
- > The role of nuclear energy in mitigating climate change including non-electrical applications (hydrogen, heat, etc): Ronald Schram (NRG), Michael Fütterer (JRC)

Contact us

www.snetp.eu

secretariat@snetp.eu

www.linkedin.com/company/snetp

@SNE_TP

